Vivace: Renewable Energy from Slow Water Currents
Slow-moving ocean and river currents could be a new, reliable and affordable alternative energy source. A University of Michigan engineer has made a machine that works like a fish to turn potentially destructive vibrations in fluid flows into clean, renewable power.I have not been a fan of tidal energy as it is too expensive to be competitive with solar and wind energy. But, if this VIVACE system can really produce power for just 5.5¢ a kWh then this could provide a lot of energy at a competitive price. I am also interested in seeing how well this technology would work with sailboats and other pleasure boats to recharge batteries and power electric devices.
VIVACE is the first known device that could harness energy from most of the water currents around the globe because it works in flows moving slower than 2 knots (about 2 miles per hour.) Most of the Earth's currents are slower than 3 knots. Turbines and water mills need an average of 5 or 6 knots to operate efficiently.
The working prototype in his lab is just one sleek cylinder attached to springs. The cylinder hangs horizontally across the flow of water in a tractor-trailer-sized tank in his marine renewable energy laboratory. The water in the tank flows at 1.5 knots. The very presence of the cylinder in the current causes alternating vortices to form above and below the cylinder. The vortices push and pull the passive cylinder up and down on its springs, creating mechanical energy. Then, the machine converts the mechanical energy into electricity.
Just a few cylinders might be enough to power an anchored ship, or a lighthouse, Bernitsas says. These cylinders could be stacked in a short ladder. The professor estimates that array of VIVACE converters the size of a running track and about two stories high could power about 100,000 houses. Such an array could rest on a river bed or it could dangle, suspended in the water.
Bernitsas says VIVACE energy would cost about 5.5 cents per kilowatt hour. Wind energy costs 6.9 cents a kilowatt hour. Nuclear costs 4.6, and solar power costs between 16 and 48 cents per kilowatt hour depending on the location.
"There won't be one solution for the world's energy needs," Bernitsas said. "But if we could harness 0.1 percent of the energy in the ocean, we could support the energy needs of 15 billion people."
Definitely a technology to keep your eyes on.
via U Mich via Gizmodo and Telegraph
3 comments:
sweet!
wowwwwwwwwww
It would be cool if it actually works ??? I doubt if it will harness enough energy
Post a Comment
Note: Only a member of this blog may post a comment.