Plastic for Batteries and Solar Cells
First, from The Economist, we have plastics being used for solar cells (the article also has some good stuff on new solar energy technologies).
Kwanghee Lee of Pusan National University, in South Korea, and Alan Heeger of the University of California, Santa Barbara, work on solar cells made of electrically conductive plastics. (Indeed, Dr Heeger won a Nobel prize for discovering that some plastics can be made to conduct electricity.) They found that by adding titanium oxide to such a cell and then baking it in an oven, they could increase the efficiency with which it converted solar energy into electricity.Second, from Engadget we have batteries made of plastics.
The technique used by Dr Lee and Dr Heeger boosts the efficiency of plastic cells to 5.6%. That is still poor compared with silicon, but it is a big improvement on what was previously possible. Dr Lee concedes that there is still a long way to go, but says that even an efficiency of 7% would bring plastic cells into competition with their silicon cousins, given how cheap they are to manufacture.
That’s the question Palmore set out to answer with Hyun-Kon Song, a former postdoctoral research associate at Brown who now works as a researcher at LG Chem, Ltd. They began to experiment with a new energy-storage system using a substance called polypyrrole, a chemical compound that carries an electrical current. Discovery and development of polypyrrole and other conductive polymers netted three scientists the 2000 Nobel Prize in Chemistry.I guess the Graduate was right, plastics are the future.
The result is a hybrid. Like a capacitor, the battery can be rapidly charged then discharged to deliver power. Like a battery, it can store and deliver that charge over long periods of time. During performance testing, the new battery performed like a hybrid, too. It had twice the storage capacity of an electric double-layer capacitor. And it delivered more than 100 times the power of a standard alkaline battery.
But Palmore said the new battery’s form, as well as its function, is exciting. In width and height, it is smaller than an iPod Nano. And it’s thinner, about as slim as an overhead transparency. Palmore said some performance problems – such as decreased storage capacity after repeated recharging – must be overcome before the device is marketable.
No comments:
Post a Comment
Note: Only a member of this blog may post a comment.